ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy
نویسندگان
چکیده
Diseases of ectopic calcification of the vascular wall range from lethal orphan diseases such as generalized arterial calcification of infancy (GACI), to common diseases such as hardening of the arteries associated with aging and calciphylaxis of chronic kidney disease (CKD). GACI is a lethal orphan disease in which infants calcify the internal elastic lamina of their medium and large arteries and expire of cardiac failure as neonates, while calciphylaxis of CKD is a ubiquitous vascular calcification in patients with renal failure. Both disorders are characterized by vascular Mönckeburg's sclerosis accompanied by decreased concentrations of plasma inorganic pyrophosphate (PPi). Here we demonstrate that subcutaneous administration of an ENPP1-Fc fusion protein prevents the mortality, vascular calcifications and sequela of disease in animal models of GACI, and is accompanied by a complete clinical and biomarker response. Our findings have implications for the treatment of rare and common diseases of ectopic vascular calcification.
منابع مشابه
Generalized arterial calcification of infancy and pseudoxanthoma elasticum: two sides of the same coin
Generalized arterial calcification of infancy (GACI) is associated with biallelic mutations in ENPP1 in the majority of cases, whereas mutations in ABCC6 (ATP-binding cassette subfamily C number 6) are known to cause pseudoxanthoma elasticum (PXE). However, ABCC6 mutations account for a significant subset of GACI cases, and ENPP1 mutations can also be associated with PXE lesions. Based on the c...
متن کاملEffects of etidronate on the Enpp1−/− mouse model of generalized arterial calcification of infancy
Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder of spontaneous infantile arterial and periarticular calcification which is attributed to mutations in the ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) gene. Whilst the bisphosphonate, etidronate, is currently used off-label for the treatment for GACI, recent studies have highlighted its detrime...
متن کاملDual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy
Generalized arterial calcification of infancy is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene, resulting in reduced plasma inorganic pyrophosphate (PPi) levels. We previously characterized the Enpp1(asj) mutant mouse as a model of generalized arterial calcification of infancy, and we have now explored the potential efficacy of bisphosphonates, nonhydrolyz...
متن کاملGeneralized arterial calcification of infancy and pseudoxanthoma elasticum can be caused by mutations in either ENPP1 or ABCC6.
Spontaneous pathologic arterial calcifications in childhood can occur in generalized arterial calcification of infancy (GACI) or in pseudoxanthoma elasticum (PXE). GACI is associated with biallelic mutations in ENPP1 in the majority of cases, whereas mutations in ABCC6 are known to cause PXE. However, the genetic basis in subsets of both disease phenotypes remains elusive. We hypothesized that ...
متن کاملZebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE)
In recent years it has become clear that, mechanistically, biomineralization is a process that has to be actively inhibited as a default state. This inhibition must be released in a rigidly controlled manner in order for mineralization to occur in skeletal elements and teeth. A central aspect of this concept is the tightly controlled balance between phosphate, a constituent of the biomineral hy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015